
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53221 934

A Study on Different Part of Speech (POS)

Tagging Approaches in Assamese Language

Bipul Roy
1
, Bipul Syam Purkayastha

2

Scientist B, NIELIT, Itanagar Centre, Arunachal Pradesh, India
 1

Professor, Department of Computer Science, Assam University, Assam, India
 2

Abstract: Syntactic parsing is a necessary task which is required for Natural Language Processing (NLP) applications

including Part of Speech (POS) tagger. For the development and enrichment of languages, part of speech tagging plays

a very crucial role. Part of speech tagging, especially for the regional Indian languages can give an international and

world-wide approach. For a regional language like Assamese which is Assam’s official language, part of speech

tagging has become very much essential for the overall flourishment of the language. The linguistic experts have

developed different types of POS tagging approaches like Rule based, Stochastic based, Neural Network based

approaches, etc. Here in this paper our aim is to briefly overview the computational works that has been done till date

by the linguists in the field of POS tagging of Assamese language.

Keywords: Syntatic Parsing, POS Tagging, Assamese, Stochastic.

I. INTRODUCTION

The Indian Constitution Recognized language Assamese is

an Eastern Indo-Aryan Language spoken by around 32

million people in the Indian states of Assam,

Meghalaya, Arunachal Pradesh and also spoken in

Bangladesh and Bhutan partially. But , unfortunately,

despite such a widespread, well used and morphological

richness, a very less work has been done so far in terms of

formal computational study of Assamese language like

natural language processing. Natural language processing

is the skill of a computer program to understand human

language as it is spoken. NLP is a process of developing a

system that can read text and translate between one human

language and another. Part of speech tagging is an

important tool for processing natural languages and the

work on part-of-speech (POS) tagging has begun in the

early 1960s [6]. It is one of the simplest as well as most

stable and statistical model for many NLP applications.

POS tagging is an initial stage of information extraction,

summarization, retrieval, machine translation, speech

conversion [6]. Here in this paper, we are going to briefly

overview the Parsing algorithms & POS tagging

approaches that have been done till date to Assamese

language.

II. BACKGROUND THEORY

A. What is Part of Speech Tagging?

The technique of assigning an appropriate part of speech

tag for each word in an input sentence of a language is

called Part of Speech Tagging. It is commonly referred to

as POS tagging. Part of speech includes nouns, verbs,

adjectives, pronouns, conjunctions and their sub-categories

[2, 10].

Example:

Word: Bird, Tag: Noun

Word: Sing, Tag: verb

Word: Melodious, Tag: Adjective

Note that some words can have more than one tag

associated with. For example, the word “play” can be a

noun or verb depending on the context.

B. Part of Speech Tagger

Part of Speech tagger or POS tagger is a tagging program

in NLP. Taggers use several kinds of information,

dictionaries, lexicons, rules and so on. Dictionaries have a

category or categories of particular words, i.e. a word may

belong to more than one category. For example, the word

“study” is both noun and verb. Taggers use probabilistic

information to solve such ambiguity.

There are mainly two types of taggers, viz. Rule-based

taggers and Stochastic taggers. Rule-based taggers use

hand written rules to distinguish the tag ambiguity.

Stochastic taggers are either HMM based, choosing the tag

sequence which maximizes the product of word likelihood

and tag sequence probability, or Transformation based,

using decision trees or maximum entropy models to

combine probabilistic features. Ideally a typical tagger

should be robust, efficient, accurate, tunable and reusable.

In reality taggers either definitely identify the tag for the

given word or make the best guess based on the available

information. As the natural language is complex, it is

sometimes difficult for the taggers to make accurate

decisions about tags. So occasional errors in tagging are

not taken as a major roadblock to NLP research.

C. Tagset

Tagset is the set of tags from which the tagger is supposed

to choose to attach to the relevant word. Every tagger will

be given a standard tagset. The tagset may be coarse such

as N (Noun), V (Verb), ADJ (adjective), ADV (Adverb),

PREP (Preposition), CONJ (Conjunction) or fine-grained

such as NNOM (Noun-Nominative), NSOC (Noun-

Sociative), VFIN (Verb finite) , VNFIN (Verb Nonfinite)

and so on. Most of the taggers use only fine grained tagset.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53221 935

C. Architecture of POS Tagger

1. Tokenization

 The given text is divided into tokens so that they can be

used for further analysis. The tokens may be words,

punctuation marks, and utterance boundaries.

2. Ambiguity look-up

 This is to use lexicon and a guessor for unknown words.

While the lexicon provides a list of word forms and their

likely part of speech, guessors analyze unknown tokens.

Compiler or interpreter, lexicon and guessor make what is

known as lexical analyzer. A lexical analyzer is a program

which breaks a text into lexemes (tokens).

3. Ambiguity Resolution

It is a property of linguistic expressions. If an expression

(word/phrase/sentence) has more than one interpretation

we can refer it as ambiguous. The process to remove the

ambiguity of words in a given context is called

disambiguation. Disambiguation is based on information

about word such as the probability of the word. For

example, the word “power” is more likely used as a noun

than as a verb. Disambiguation is also based on contextual

information or word/tag sequences. For example, the

model might prefer noun analyses over verb analyses if the

preceding word is a preposition or article. Disambiguation

is the most difficult problem in tagging. The ambiguity

which is identified in the tagging module is resolved using

the grammar rules. Sometimes, the ambiguity of a word

can get reduced when it appears in the context of other

words.

E. Applications of POS Tagger

The POS tagger can be used as a pre-processor. Text

indexing and retrieval uses POS information. Speech

processing uses POS tags to decide the pronunciation.

POS tagger is used for making tagged corpora.

III. POS TAGGING TECHNIQUES

A. Rule-based POS Tagging

Rule-based part-of-speech tagging is the oldest approach

that uses hand-written rules for tagging. Rule based tagger

depends on dictionary or lexicon to get possible tags for

each word to be tagged. Hand-written rules are used to

identify the correct tag when a word has more than one

possible tag. Disambiguation is done by analyzing the

linguistic features of the word, its preceding word, its

following word and other aspects. For example, if the

preceding word is article then the word in question must

be a noun. This information is coded in the form of rules.

B. What is Markov Model?

Markov models extract linguistic knowledge automatically

from the large corpora and do POS tagging. Markov

models are alternatives for laborious and time-consuming

manual tagging.

A Markov model is nothing but a finite-state machine.

Each state has two probability distributions: the

probability of emitting a symbol and probability of

moving to a particular state. From one state, the Markov

model emits a symbol and then moves to another state.

The objective of Markov model is to find optimal

sequence of tags T = {t1, t2, t3,…tn} for the word

sequence W = {w1,w2,w3,…wn}. That is to find the most

probable tag sequence for a word sequence.

If we assume the probability of a tag depends only on one

previous tag, then the model developed is called bigram

model. Each state in the bigram model corresponds to a

POS tag. The probability of moving from one POS state to

another can be represented as P(ti|tj). The probability of

word being emitted from a particular tag state can be

represented as P(wi|tj). Assume that the sentence, “The sun

shines” is to be tagged. Obviously, the word, “The” is

determiner, so can be annotated with tag, say Det, “sun”

 is noun so the tag can be N, and “shines” is a verb so the

tag can be V. So we get the tagged sentence as

The|Det sun|N shines|V

Given this model, P(Det N V | The sun shines) is estimated

as

P(Det | START) * P(N | Det) * P(V | N) * P(The | Det) *

P(sun | N) * P(shiness | V)

This is how to derive probabilities required for the Markov

model.

C. Viterbi Algorithm/ Hidden Markov Models (HMM) in

POS tagging

The Viterbi algorithm is a dynamic programming

algorithm for finding the most likely sequence of hidden

states – called the Viterbi path – that results in a sequence

of observed events, especially in the context of Markov

information sources and hidden Markov models.

Hidden Markov Models (HMM) are so called because the

state transitions are not observable. HMM taggers require

only a lexicon and untagged text for training a tagger.

Hidden Markov Models aim to make a language model

automatically with little effort. Disambiguation is done by

assigning more probable tag. For example, the word

“help” will be tagged as a noun rather than verb if it comes

after an article. This is because the probability of noun is

much more than verb in this context.

In an HMM, we know only the probabilistic function of

the state sequence. In the beginning of tagging process,

some initial tag probabilities are assigned to the HMM.

Then in each training cycle, this initial setting is refined

using the Baum-Welch re-estimation algorithm.

D. Transformation-based Learning

1. What is Transformation-Based Learning?

Transformation-based learning (TBL) is a rule-based

algorithm for automatic tagging of parts-of-speech to the

given text. TBL transforms one state to another using

transformation rules in order to find the suitable tag for

each word. TBL allows us to have linguistic knowledge in

a readable form. It extracts linguistic information

automatically from corpora. The outcome of TBL is an

ordered sequence of transformations of the form as shown

below.

Tagi->Tagj in context C

A typical transformation-based learner has an initial state

annotator, a set of transformations and an objective

function.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53221 936

2. Initial Annotator

It is a program to assign tags to each and every word in the

given text. It may be one that assigns tags randomly or a

Markov model tagger. Usually it assigns every word with

its most likely tag as indicated in the training corpus. For

example, “walk” would be initially labelled as a verb.

3. Transformations

The learner is given allowable transformation types. A tag

may change from X to Y if the previous word is W, the

previous tag is ti and the following tag is tj, or the tag two

before is ti and the following word is W. Consider the

following sentence, The sun shines. A typical TBL tagger

(or Brill Tagger) can easily identify that “sun” is noun if

it is given the rule, if the previous tag is an article and the

following tag is a verb.

4. How transformation based learning works?

Transformation based learning (TBL) usually starts

with some simple solution to the problem. Then it runs

through cycles. At each cycle, the transformation which

gives more benefit is chosen and applied to the problem.

The algorithm stops when the selected transformations do

not add more value or there are no more transformations to

be selected. This is like painting a wall with background

color first, then paint different color in each block as per

its shape or so. TBL is best suitable for classification

tasks.

In TBL, accuracy is generally considered as the objective

function. So in each training cycle, the tagger finds the

transformations that greatly reduce the errors in the

training set. This transformation is then added to the

transformation list and applied to the training corpus. At

the end of the training, the tagger is run by first tagging the

fresh text with initial-state annotator, then applying each

transformation in order wherever it can apply.

5 . Advantages of Transformation Based Learning

 Small set of simple rules that are sufficient for tagging

is learned.

 As the learned rules are easy to understand

development and debugging are made easier.

 Interlacing of machine-learned and human-generated

rules reduce the complexity in tagging.

 Transformation list can be compiled into finite-state

machine resulting in a very fast tagger. A TBL tagger

can be even ten times faster than the fastest Markov-

model tagger.

 TBL is less rigid in what cues it uses to disambiguate a

particular word. Still it can choose appropriate cues.

6. Disadvantages of Transformation Based Learning

 TBL does not provide tag probabilities.

 Training time is often intolerably long, especially on

the large corpora which are very common in Natural

Language Processing.

IV. PARSING

A. Introduction of Parsing

Parsing is another important aspect utilized in conjunction

with part-of-speech tagging to identify and understand

natural language sentences. With parsing, when given an

input sentence and a grammar, it can be determined

whether the grammar can generate the sentence. Parsing

can be described, at least in this context, as “the process of

analyzing a string of words to uncover its phrase structure,

according to the rules of the grammar” [1, 3, 8, 11]. In

other words, part-of-speech tagging can be viewed as a

necessary subtask of parsing, as the tagging rules occur as

part of the lexicon. The goal of parsing is to find all

possible permutations that contain all words in the given

input while abiding by the rules of the grammar to create a

sentence; currently two main strategies exist to do so.

A top-down parsing strategy begins with the knowledge

that the input is a sentence, then attempts to create all

possible permutations that can be derived from this

interpretation and check the results against the original

input to find the proper formatting. A bottom-up parsing

strategy starts with the input and applies all possible rules

to attempt to generate the base property.

Parsing the sentence would convert the sentence into a tree

whose leaves will hold POS tags (which correspond to

words in the sentence), but the rest of the tree would tell

you how exactly these words are joining together to make

the overall sentence.

B. Earley’s Parsing Algorithm

In computer science, the Earley parser is an algorithm for

parsing strings that belong to a given context-free

language, though (depending on the variant) it may suffer

problems with certain nullable grammars. The algorithm,

named after its inventor, Jay Earley, is a chart parser that

uses dynamic programming; it is mainly used for parsing

in computational linguistics. It was first introduced in his

dissertation in 1968.

The task of the parser is essential to determine if and how

the grammar of a pre-existing sentence can be determined.

This can be done essentially in two ways, Top-down

Parsing and Bottom- up Parsing.

Earley’s algorithm is a top-down dynamic programming

algorithm [11]. We use Earley’s dot notation: given a

production X → xy, the notation X → x • y represents a

condition in which x has already been parsed and y is

expected.

For every input position (which represents a position

between tokens), the parser generates an ordered state set.

Each state is a tuple (X → x • y, i), consisting of

 the production currently being matched (X → x y);

 our current position in that production (represented by

the dot);

 the position i in the input at which the matching of this

production began: the origin position

The state set at input position k is called S(k). The parser

is seeded with S(0), consisting of only the top-level rule.

The parser then iteratively operates in three stages:

prediction, scanning, and completion.

 Prediction: For every state in S(k) of the form (X → x •

Y y, j) (where j is the origin position as above), add (Y

→ • z, k) to S(k) for every production in the grammar

with Y on the left-hand side (Y → z).

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53221 937

 Scanning: If a is the next symbol in the input stream,

for every state in S(k) of the form (X → x • a y, j), add

(X → x a • y, j) to S(k+1).

 Completion: For every state in S(k) of the form (X → z

•, j), find states in S(j) of the form (Y → x • X y, i) and

add (Y → x X • y, i) to S(k).

V. LITERATURE STUDY

Navanath Saharia et al. in 2009 [5] have used HMM and

the Viterbi Algorithm in the Assamese text corpus (Corpus

Asm) of nearly 3,00,000 words from the online version of

the Assamese daily News paper “Asomiya Pratidin” where

nearly 10,000 words of this corpus were manually tagged

by them for training. The tagset used by them have 172

tags which was larger in size with compared to the other

Indian languages’ tagsets. They have obtained an average

tagging accuracy of 87%. According to their report, the

HMM based experiments on various Indian languages,

they have obtained the best accuracy level so far.

Moreover, for the improvement of the system’s accuracy,

they have proposed some additional works like

 the size of the manually tagged part of the corpus will

have to be increased.

 a suitable procedure for handling unknown proper

nouns will have to be developed.

 If this system can be expanded to trigrams or even n-

grams using a larger training corpus.

Rahman, Mirzanur and et al. in 2009 [4, 7] have developed

a context free grammar (CFG) for simple Assamese

sentences. In this work they have considered only limited

number of sentences for developing rules and only seven

main tags are used. They have analyzed the issues that

arise in parsing Assamese sentences and produce an

algorithm to solve those issues. They produced a technique

to check that grammatical structure of the sentences in

Assamese text and made grammar rules by analyzing the

structure of Assamese sentences. Their Parsing program

can find the grammatical error, if any, in the Assamese

sentences. If there is no error, their program can generate

the parse tree for the input Assamese sentence. Their

algorithm is a modification of Earley’s Parsing Algorithm

and they found the algorithm simple and efficient but the

accuracy rate is not mentioned.

Navanath Saharia et al. in 2011 [7, 9] described a parsing

criterion for Assamese text. They have discussed some

salient features of Assamese syntax and the issues that

simple syntactic frameworks can not tackle. They have

also described the practical analysis of Assamese

sentences from a computational perspective. This

approach can be used to parse the simple sentences with

multiple noun, adjective, adverb clause. They have defined

a context free grammar (CFG) to parse simple Assamese

sentences like “মই কিতাপ পকিল া ো্ঁ” that is any type of simple

sentences where object is prior to verb. But the main

drawback of this approach is that it can also generate a

parse tree for a sentence which is semantically wrong.

Again they have also found that if the noun is attached

with any type of suffix, then the defined CFG can easily

generate synatically and semantically correct parse tree.

Also to generate parse tree for the sentences which can not

be obtained using their CFG, they have applied Chu-Liu-

Edmond’s maximum spanning tree algorithms. They have

achieved an accuracy of 78.82% in this particular parsing

approach.

TABLE I Literature Survey

Sl.

No

Paper name

(Year)

Publication details

and Author name

Language Method/Algorithm

/Tool

Accuracy Corpus

/Dataset

1 Part of

Speech tagger

for Assamese

Text

(2009)

In Proceedings of

the ACL IJCNLP

2009 Conference,

Short Papers,

Suntec, Singapore,

Pp. 33-36(2009)

(Navanath Saharia

et al.)

Assamese Hidden Markov

Model/Viterbi

Approach

86.89% Ten thousand

Assamese

words

(10,000)

2 Parsing of

part-of-

speech tagged

Assamese

Texts

(2009)

IJCSI International

Journal of Computer

Science Issues, Vol.

6, No. 1, 2009

(Rahman, Mirzanur

et al.)

Assamese Earley’s Parsing

Algorithm

Earley’s

algorithm

is simple

and

effective

Assamese

sentences

3 A First Step

Towards

Parsing of

Assamese

Text

(2011)

Special Volume:

Problems of Parsing

in Indian Languages

(Navanath Saharia

et al.)

Assamese Rule Based 78.82% ICON 2009

datasets

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53221 938

VI. CONCLUSION AND FUTURE WORK

Here in this paper, we have presented a brief study on the

different POS tagging approaches on Assamese language

with their performances. We also discussed briefly some

of the existing approaches used to develop parsers for

Assamese language. We found in this study that all of the

three (03) NLP approaches are efficient and satisfactory,

but only for the simple Assamese sentences. So, in this

regard much work has to be done to handle complex

Assamese sentences with different structures. Because of

relatively free word order characteristics and various

ambiguous words, POS tagging of Assamese language is

relatively tough work. The added difficulty in Assamese

language POS tagging is of unavailibity of annotated

corpora and predefined tagset which is beyond public

access. Our future work is to create annotated corpora and

an efficient Syntactic Analyzer by considering the

agglutinative and morphological rich features of Assamese

language to donate our bit of contribution to the resource

poor Assamese language.

REFERENCES

[1] Joakim, Nivre (2009), Parsing Indian languages with maltparser,
Proceedings of the ICON09 NLP Tools Contest: Indian Language

Dependency Parsing : 12-18.

[2] Patil, H.B., Patil, A.S. Pawar, B.V.: Part-of-Speech Tagger for
Marathi Language using Limited Training Corpora 2014 in

International Journal of Computer Applications (0975 – 8887)

Recent Advances in Information Technology.

[3] Bharati, Akshar, Gupta, Mridul, Yadav, Vineet, Gali, Karthik and

Misra Sharma, Dipti (2009) : Simple parser for Indian languages in
a dependency framework, Proceedings of the Third Linguistic

Annotation Workshop. Association for Computational Linguistics.

[4] Rahman, Mirzanur, Das, Sufal and Sharma, Utpal (2009): Parsing
of part-of-speech tagged Assamese Texts, IJCSI International

Journal of Computer Science Issues, Vol. 6, No. 1.

[5] Saharia, Navanath., Das, Dhrubajyoti ,Sharma, Utpal., Kalita,
Jugal.: Part of Speech Tagger for Assamese Text: In Proceedings of

the ACL IJCNLP 2009 Conference Short Papers,Suntec, Singapore,

Pp. 33-36 (2009).
[6] Rathod, Shubhangi, Govilkar, Sharvari (2015), Survey of various

POS tagging techniques for Indian regional languages, International

Journal of Computer Science and Information Technologies, Vol. 6
(3) , 2015, 2525-2529

[7] Makwana, Monika T., Vegda ,Deepak C.(2015), Survey: Natural

Languages Parsing for Indian Languages, Computer Science,

Computation and Language, Cornell University Library.

[8] Chatterji, Sanjay, Sonare, Praveen, Sarkar, Sudheshna and Roy,

Debashree (2009), Grammar Driven Rules for Hybrid Bengali
Dependency Parsing, Proceedings of ICON09 NLP Tools Contest:

Indian Language Dependency Parsing, Hyderabad, India, 2009

[9] Saharia, Navanath ,Sharma, Utpal, and Kalita, Jugal (2011) A First
Step Towards Parsing of Assamese Text, Special Volume:

Problems of Parsing in Indian Languages

[10] http://language.worldofcomputing.net/pos-tagging/parts-of-speech-
tagging.html

[11] Pandey, Rakesh, Pande, Nihar Ranjan, Dhami, H. S. : Parsing of

Kumauni Language Sentences after Modifying Earley’s
Algorithm Information Systems for Indian Languages, Volume

139 of the series Communications in Computer and Information

Science pp 165-173

