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Abstract: Syntactic parsing is a necessary task which is required for Natural Language Processing (NLP) applications 

including Part of Speech (POS) tagger.  For the development and enrichment of languages, part of speech tagging plays 

a very crucial role. Part of speech tagging, especially for the regional Indian languages can give an international and 

world-wide approach. For a regional language like Assamese which is Assam’s official language, part of speech 

tagging has become very much essential for the overall flourishment of the language. The linguistic experts have 

developed different types of POS tagging approaches like Rule based, Stochastic based, Neural Network based 

approaches, etc. Here in this paper our aim is to briefly overview the computational works that has been done till date 

by the linguists in the field of  POS tagging of Assamese language. 
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I. INTRODUCTION 
 

The Indian Constitution Recognized language Assamese is 

an Eastern Indo-Aryan Language spoken by around 32 

million people in the Indian states of Assam, 

Meghalaya, Arunachal Pradesh and also spoken in 

Bangladesh and Bhutan partially. But , unfortunately, 

despite such a widespread, well used and morphological 

richness, a very less work has been done so far in terms of 

formal computational study of Assamese language like 

natural language processing. Natural language processing 

is the skill of a computer program to understand human 

language as it is spoken. NLP is a process of developing a 

system that can read text and translate between one human 

language and another. Part of speech tagging is an 

important tool for processing natural languages and the 

work on part-of-speech (POS) tagging has begun in the 

early 1960s [6]. It is one of the simplest as well as most 

stable and statistical model for many NLP applications. 

POS tagging is an initial stage of information extraction, 

summarization, retrieval, machine translation, speech 

conversion [6]. Here in this paper, we are going to briefly 

overview the Parsing algorithms & POS tagging 

approaches that have been done till date to Assamese 

language. 
 

II. BACKGROUND THEORY 
 

A. What is Part of Speech Tagging? 

The technique of assigning an appropriate part of speech 

tag for each word in an input sentence of a language is 

called Part of Speech Tagging. It is commonly referred to 

as POS tagging. Part of speech includes nouns, verbs, 

adjectives, pronouns, conjunctions and their sub-categories 

[2, 10]. 
 

Example: 

Word: Bird, Tag: Noun 

Word: Sing, Tag: verb 

Word: Melodious, Tag: Adjective 

 
 

Note that some words can have more than one tag 

associated with. For example, the word “play” can be a 

noun or verb depending on the context. 
 

B. Part of Speech Tagger 

Part of Speech tagger or POS tagger is a tagging program  

in NLP. Taggers use several kinds of information, 

dictionaries, lexicons, rules and so on. Dictionaries have a 

category or categories of particular words, i.e.  a word may 

belong to more than one category. For example, the word 

“study” is both noun and verb. Taggers use probabilistic 

information to solve such ambiguity. 
 

There are mainly two types of taggers, viz. Rule-based 

taggers and Stochastic taggers. Rule-based taggers use 

hand written rules to distinguish the tag ambiguity. 

Stochastic taggers are either HMM based, choosing the tag 

sequence which maximizes the product of word likelihood 

and tag sequence probability, or Transformation based, 

using decision trees or maximum entropy models to 

combine probabilistic features. Ideally a typical tagger 

should be robust, efficient, accurate, tunable and reusable. 

In reality taggers either definitely identify the tag for the 

given word or make the best guess based on the available 

information. As the natural language is complex, it is 

sometimes difficult for the taggers to make accurate 

decisions about tags. So occasional errors in tagging are 

not taken as a major roadblock to NLP research. 
 

C. Tagset 

Tagset is the set of tags from which the tagger is supposed 

to choose to attach to the relevant word. Every tagger will 

be given a standard tagset. The tagset may be coarse such 

as N (Noun), V (Verb), ADJ (adjective), ADV (Adverb), 

PREP (Preposition), CONJ (Conjunction) or fine-grained 

such as NNOM (Noun-Nominative), NSOC (Noun-

Sociative), VFIN (Verb finite) , VNFIN (Verb Nonfinite) 

and so on. Most of the taggers use only fine grained tagset. 
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C. Architecture of POS Tagger 
 

1. Tokenization 

 The given text is divided into tokens so that they can be 

used for further analysis. The tokens may be words, 

punctuation marks, and utterance boundaries. 
 

2. Ambiguity look-up 

 This is to use lexicon and a guessor for unknown words. 

While the lexicon provides a list of word forms and their 

likely part of speech, guessors analyze unknown tokens. 

Compiler or interpreter, lexicon and guessor make what is 

known as lexical analyzer. A lexical analyzer is a program 

which breaks a text into lexemes (tokens). 
 

3. Ambiguity Resolution 

It is a property of linguistic expressions. If an expression 

(word/phrase/sentence) has more than one interpretation 

we can refer it as ambiguous. The process to remove the 

ambiguity of words in a given context is  called 

disambiguation. Disambiguation is based on information 

about word such as the probability of the word. For 

example, the word “power” is more likely used as a noun 

than as a verb. Disambiguation is also based on contextual 

information or word/tag sequences. For example, the 

model might prefer noun analyses over verb analyses if the 

preceding word is a preposition or article. Disambiguation 

is the most difficult problem in tagging. The ambiguity 

which is identified in the tagging module is resolved using 

the grammar rules. Sometimes, the ambiguity of a word 

can get reduced when it appears in the context of other 

words. 
 

E. Applications of POS Tagger 

The POS tagger can be used as a pre-processor. Text 

indexing and retrieval uses POS information. Speech 

processing uses POS tags to decide the pronunciation. 

POS tagger is used for making tagged corpora. 
 

III.   POS TAGGING TECHNIQUES 
 

A. Rule-based POS Tagging 

Rule-based part-of-speech tagging is the oldest approach 

that uses hand-written rules for tagging. Rule based tagger 

depends on dictionary or lexicon to get possible tags for 

each word to be tagged. Hand-written rules are used to 

identify the correct tag when a word has more than one 

possible tag. Disambiguation is done by analyzing the 

linguistic features of the word, its preceding word, its 

following word and other aspects. For example, if the 

preceding word is article then the word in question must 

be a noun. This information is coded in the form of rules.  
 

B. What is Markov Model? 

Markov models extract linguistic knowledge automatically 

from the large corpora and do POS tagging. Markov 

models are alternatives for laborious and time-consuming 

manual tagging. 

A Markov model is nothing but a finite-state machine. 

Each state has two probability distributions: the 

probability of emitting a symbol and probability of 

moving to a particular state. From one state, the Markov 

model emits a symbol and then moves to another state. 

The objective of Markov model is to find optimal 

sequence of tags T = {t1, t2, t3,…tn} for the word 

sequence W = {w1,w2,w3,…wn}. That is to find the most 

probable tag sequence for a word sequence. 

If we assume the probability of a tag depends only on one 

previous tag, then the model developed is called bigram 

model. Each state in the bigram model corresponds to a 

POS tag. The probability of moving from one POS state to 

another can be represented as P(ti|tj). The probability of 

word being emitted from a particular tag state can be 

represented as P(wi|tj). Assume that the sentence, “The sun 

shines” is to be tagged. Obviously, the word, “The” is 

determiner, so can be annotated with tag, say Det, “sun” 

 is noun so the tag can be N, and “shines”  is a verb so the 

tag can be V. So we get the tagged sentence as 

The|Det sun|N shines|V 

Given this model, P(Det N V | The sun shines) is estimated 

as    

P(Det | START) * P(N | Det) * P(V | N) * P(The | Det) * 

P(sun | N) * P(shiness | V) 

This is how to derive probabilities required for the Markov 

model. 
 

C. Viterbi Algorithm/ Hidden Markov Models (HMM) in 

POS tagging 

The Viterbi algorithm is a dynamic programming 

algorithm for finding the most likely sequence of hidden 

states – called the Viterbi path – that results in a sequence 

of observed events, especially in the context of Markov 

information sources and hidden Markov models. 

Hidden Markov Models (HMM) are so called because the 

state transitions are not observable. HMM taggers require 

only a lexicon and untagged text for training a tagger. 

Hidden Markov Models aim to make a language model 

automatically with little effort. Disambiguation is done by 

assigning more probable tag. For example, the word 

“help” will be tagged as a noun rather than verb if it comes 

after an article. This is because the probability of noun is 

much more than verb in this context. 

In an HMM, we know only the probabilistic function of 

the state sequence. In the beginning of tagging process, 

some initial tag probabilities are assigned to the HMM. 

Then in each training cycle, this initial setting is refined 

using the Baum-Welch re-estimation algorithm.  
 

D. Transformation-based Learning 

1. What is Transformation-Based Learning? 

Transformation-based learning (TBL) is a rule-based 

algorithm for automatic tagging of parts-of-speech to the 

given text. TBL transforms one state to another using 

transformation rules in order to find the suitable tag for 

each word. TBL allows us to have linguistic knowledge in 

a readable form. It extracts linguistic information 

automatically from corpora. The outcome of TBL is an 

ordered sequence of transformations of the form as shown 

below. 
 

Tagi->Tagj in context C 

A typical transformation-based learner has an initial state 

annotator, a set of transformations and an objective 

function. 
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2. Initial Annotator 

It is a program to assign tags to each and every word in the 

given text. It may be one that assigns tags randomly or a 

Markov model tagger. Usually it assigns every word with 

its most likely tag as indicated in the training corpus. For 

example, “walk” would be initially labelled as a verb. 
 

3. Transformations 

The learner is given allowable transformation types. A tag 

may change from X to Y if the previous word is W, the 

previous tag is ti and the following tag is tj, or the tag two 

before is ti and the following word is W. Consider the 

following sentence, The sun shines. A typical TBL tagger 

(or Brill Tagger) can easily identify that “sun” is noun if 

it is given the rule, if the previous tag is an article and the 

following tag is a verb. 
 

4. How transformation based learning works? 

Transformation based learning  (TBL) usually starts 

with some simple solution to the problem. Then it runs 

through cycles. At each cycle, the transformation which 

gives more benefit is chosen and applied to the problem. 

The algorithm stops when the selected transformations do 

not add more value or there are no more transformations to 

be selected. This is like painting a wall with background 

color first, then paint different color in each block as per 

its shape or so. TBL is best suitable for classification 

tasks. 

In TBL, accuracy is generally considered as the objective 

function. So in each training cycle, the tagger finds the 

transformations that greatly reduce the errors in the 

training set. This transformation is then added to the 

transformation list and applied to the training corpus. At 

the end of the training, the tagger is run by first tagging the 

fresh text with initial-state annotator, then applying each 

transformation in order wherever it can apply. 
 

5 . Advantages of Transformation Based Learning 

 Small set of simple rules that are sufficient for tagging 

is learned. 

 As the learned rules are easy to understand 

development and debugging are made easier. 

 Interlacing of machine-learned and human-generated 

rules reduce the complexity in tagging. 

 Transformation list can be compiled into finite-state 

machine resulting in a very fast tagger. A TBL tagger 

can be even ten times faster than the fastest Markov-

model tagger. 

 TBL is less rigid in what cues it uses to disambiguate a 

particular word. Still it can choose appropriate cues. 
 

6.  Disadvantages of Transformation Based Learning 

 TBL does not provide tag probabilities. 

 Training time is often intolerably long, especially on 

the large corpora which are very common in Natural 

Language Processing. 
 

IV. PARSING 
 

A.  Introduction of Parsing 

Parsing is another important aspect utilized in conjunction 

with part-of-speech tagging to identify and understand 

natural language sentences. With parsing, when given an 

input sentence and a grammar, it can be determined 

whether the grammar can generate the sentence. Parsing 

can be described, at least in this context, as “the process of 

analyzing a string of words to uncover its phrase structure, 

according to the rules of the grammar” [1, 3, 8, 11]. In 

other words, part-of-speech tagging can be viewed as a 

necessary subtask of parsing, as the tagging rules occur as 

part of the lexicon. The goal of parsing is to find all 

possible permutations that contain all words in the given 

input while abiding by the rules of the grammar to create a 

sentence; currently two main strategies exist to do so. 

A top-down parsing strategy begins with the knowledge 

that the input is a sentence, then attempts to create all 

possible permutations that can be derived from this 

interpretation and check the results against the original 

input to find the proper formatting. A bottom-up parsing 

strategy starts with the input and applies all possible rules 

to attempt to generate the base property. 
 

Parsing the sentence would convert the sentence into a tree 

whose leaves will hold POS tags (which correspond to 

words in the sentence), but the rest of the tree would tell 

you how exactly these words are joining together to make 

the overall sentence. 
 

B.   Earley’s  Parsing Algorithm  

In computer science, the Earley parser is an  algorithm for  

parsing strings that belong to a given context-free 

language, though (depending on the variant) it may suffer 

problems with certain nullable grammars. The algorithm, 

named after its inventor, Jay Earley, is a chart parser that 

uses dynamic programming; it is mainly used for parsing 

in computational linguistics. It was first introduced in his 

dissertation in 1968. 

The task of the parser is essential to determine if and how 

the grammar of a pre-existing sentence can be determined. 

This can be done essentially in two ways, Top-down 

Parsing and Bottom- up Parsing. 

Earley’s algorithm is a top-down dynamic programming 

algorithm [11]. We use Earley’s dot notation: given a 

production X → xy, the notation X → x • y represents a 

condition in which x has already been parsed and y is 

expected. 

For every input position (which represents a position 

between tokens), the parser generates an ordered state set. 

Each state is a tuple (X → x • y, i), consisting of 
 

 the production currently being matched (X → x y); 

 our current position in that production (represented by 

the dot); 

 the position i in the input at which the matching of this 

production began: the origin position 

The state set at input position k is called S(k). The parser 

is seeded with S(0), consisting of only the top-level rule. 

The parser then iteratively operates in three stages: 

prediction, scanning, and completion. 
 

 Prediction: For every state in S(k) of the form (X → x • 

Y y, j) (where j is the origin position as above), add (Y 

→ • z, k) to S(k) for every production in the grammar 

with Y on the left-hand side (Y → z). 
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 Scanning: If a is the next symbol in the input stream, 

for every state in S(k) of the form (X → x • a y, j), add 

(X → x a • y, j) to S(k+1). 

 Completion: For every state in S(k) of the form (X → z 

•, j), find states in S(j) of the form (Y → x • X y, i) and 

add (Y → x X • y, i) to S(k). 

 

V. LITERATURE STUDY 
 

Navanath Saharia et al. in 2009 [5] have used HMM and 

the Viterbi Algorithm in the Assamese text corpus (Corpus  

Asm) of nearly 3,00,000 words from the online version of 

the Assamese daily News paper “Asomiya Pratidin” where 

nearly 10,000 words of this corpus were manually tagged 

by them for training. The tagset used by them have 172 

tags which was larger in size with compared to the other 

Indian languages’ tagsets. They have obtained an average 

tagging accuracy of 87%. According to their report, the 

HMM based experiments on various Indian languages, 

they have obtained the best accuracy level so far. 

Moreover, for the improvement of the system’s accuracy, 

they have proposed some additional works like 
 

 the size of the manually tagged part of the corpus will 

have to be increased. 

 a suitable procedure for handling unknown proper 

nouns will have to be developed. 

 If this system can be expanded to trigrams or even n-

grams using a larger training corpus. 
 

Rahman, Mirzanur and et al. in 2009 [4, 7] have developed 

a context free grammar (CFG) for simple Assamese 

sentences. In this work they have considered only limited 

number of sentences for developing rules and only seven 

main tags are used. They have analyzed the issues that 

arise in parsing Assamese sentences and produce an 

algorithm to solve those issues. They produced a technique 

to check that grammatical structure of the sentences in 

Assamese text and made grammar rules by analyzing the 

structure of Assamese sentences. Their Parsing program 

can find the grammatical error, if any, in the Assamese 

sentences. If there is no error, their program can generate 

the parse tree for the input Assamese sentence. Their 

algorithm is a modification of Earley’s Parsing Algorithm 

and they found the algorithm simple and efficient but the 

accuracy rate is not mentioned. 
 

Navanath Saharia et al. in 2011 [7, 9] described a parsing 

criterion for Assamese text. They have discussed some 

salient features of Assamese syntax and the issues that 

simple syntactic frameworks can not tackle. They have 

also described the practical analysis of Assamese 

sentences from a computational perspective. This 

approach can be used to parse the simple sentences with 

multiple noun, adjective, adverb clause. They have defined 

a context free grammar (CFG) to parse simple Assamese 

sentences like “মই কিতাপ পকিল া ো্ঁ” that is any type of simple 

sentences where object is prior to verb. But the main 

drawback of this approach is that it can also generate a 

parse tree for a sentence which is semantically wrong. 

Again they have also found that if the noun is attached 

with any type of suffix, then the defined CFG can easily 

generate synatically and semantically correct parse tree. 

Also to generate parse tree for the sentences which can not 

be obtained using their CFG, they have applied Chu-Liu-

Edmond’s maximum spanning  tree algorithms. They have 

achieved an accuracy of 78.82% in this particular parsing 

approach.

TABLE I Literature Survey 
 

Sl. 

No 

Paper name 

(Year) 

Publication details  

and Author name 

Language Method/Algorithm 

/Tool 

Accuracy Corpus 

/Dataset 

1 Part of 

Speech tagger 

for Assamese 

Text  

(2009)  

In Proceedings of 

the ACL IJCNLP 

2009 Conference, 

Short Papers, 

Suntec, Singapore, 

Pp. 33-36(2009) 

(Navanath Saharia 

et al.)  

Assamese  Hidden Markov 

Model/Viterbi 

Approach 

86.89%  Ten thousand 

Assamese 

words 

(10,000)  

2 Parsing of 

part-of-

speech tagged 

Assamese 

Texts  

(2009)  

IJCSI International 

Journal of Computer 

Science Issues, Vol. 

6, No. 1, 2009  

(Rahman, Mirzanur 

et al.)  

Assamese  Earley’s  Parsing 

Algorithm  

Earley’s 

algorithm 

is simple 

and 

effective  

Assamese 

sentences  

3 A First Step 

Towards 

Parsing of 

Assamese 

Text  

(2011)  

Special Volume: 

Problems of Parsing 

in Indian Languages  

(Navanath Saharia 

et al.)  

Assamese  Rule Based  78.82%  ICON 2009 

datasets  
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VI. CONCLUSION AND FUTURE WORK 
 

Here in this paper, we have presented a brief study on the  

different POS tagging approaches on Assamese language 

with their performances. We also discussed briefly some 

of the existing approaches used to develop parsers for 

Assamese language.  We found  in this study that all of the 

three (03) NLP approaches are efficient and  satisfactory, 

but only for the simple Assamese sentences. So, in this 

regard much work has to be done to handle complex 

Assamese sentences with different structures. Because of 

relatively free word order characteristics and various 

ambiguous words, POS tagging of Assamese language is 

relatively tough work. The added difficulty in Assamese 

language POS tagging is of unavailibity of annotated 

corpora and predefined tagset which is beyond public 

access. Our future work is to create annotated corpora and 

an efficient Syntactic Analyzer by considering the 

agglutinative and morphological rich features of Assamese 

language to donate our bit of contribution to the resource 

poor Assamese language. 
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